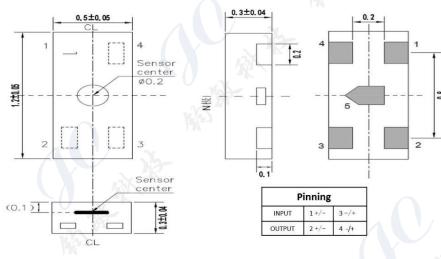


MG1001 GaAs Hall

MG1001砷化镓霍尔元件

• Linear GaAs Hall Element

线性砷化镓霍尔元件


• Excellent Thermal Characteristics

卓越的热稳定特性

• Thin-type DFN Package

超薄 DFN 封装

外形尺寸图 Dimensional Drawing (Unit MM)

Sensing center diameter Φ = 0.3 mm

最大额定值 Absolute Maximum Rating

Operating Temperature Range -40° C ~ 125 $^{\circ}$ C 工作温度 Storage Temperature Range -40° C ~ 150 $^{\circ}$ C 存储温度 Maximum Input Voltage V_c [V] 9.5V 最大输入电压 V_c [V] Maximum Input Power P_0 [mW] 105mW 最大输入功率

Copy Right Reserved

Version 1.0

● 电气特性 (室温 25℃) Electrical Characteristics (RT=25℃)

Table 1. Electrical Characteristics of MG1001.

项目 Item	符号 Symbol	测量条件 Test Condi.	最 小 Min.	标准 Typ.	最大 Max.	单位 Unit
霍尔电压 Hall Voltage	V _H	B = 50mT, V _C =6V T _a = RT	55		75	mV
输入电阻 Input Resistance	R _{in}	$B = 0$ mT, $I_{c} = 0.1$ mA $T_{a} = RT$	650		850	Ω
输出电阻 Output Resistance	R out	\boldsymbol{B} = 0mT, \boldsymbol{I}_{C} = 0.1mA \boldsymbol{T}_{a} = RT	650		850	Ω
非平衡电压 Offset Voltage	V _{os}	\boldsymbol{B} = 0mT, V _C = 6V \boldsymbol{T}_{a} = RT	-5		+5	mV
输出电压温度系数 Temp. Coeffi. of Ин	α V _H	B = 50mT, I _C =5mA, T _a = 25°C ~ 125°C	Jh-	114	0.06	%/°C
输入电阻温度系数 Temp. Coeffi. of R in	α R in	B = 0mT, I _C =0.1mA, T _a = 25°C ~ 125°C	R		0.3	%/°C
线性度 linearity	ΔK	$B = 0.1 \sim 0.5$ T, $I_{\rm C} = 5$ mA, $T_{\rm a} = $ RT	-2		2	%

表 1. MG1001 电气特性

Copy Right Reserved

Version 1.0

Note:

1. $\boldsymbol{V}_{\mathrm{H}} = \boldsymbol{V}_{\mathrm{H}-\mathrm{M}} - \boldsymbol{V}_{\mathrm{os}}$

in which V_{H-M} is the Output Hall Voltage, V_H is the Hall Voltage and V_{os} is the offset Voltage under the identical electrical stimuli.

2.
$$\alpha V_{\rm H} = \frac{1}{V_{\rm H} (T_{a1})} \times \frac{V_{\rm H} (T_{a2}) - V_{\rm H} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

 $T_{a1} = 25^{\circ}\text{C}, \quad T_{a2} = 125^{\circ}\text{C}$

3.
$$\alpha R_{in} = \frac{1}{R_{in} (T_{a1})} \times \frac{R_{in} (T_{a2}) - R_{in} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

 $T_{a1} = 25^{\circ}\text{C}, \quad T_{a2} = 125^{\circ}\text{C}$

4.
$$\Delta \mathbf{K} = \frac{\mathbf{K}(B_1) - \mathbf{K}(B_2)}{\frac{\mathbf{K}(B_1) + \mathbf{K}(B_2)}{\mathbf{K}(B_1) + \mathbf{K}(B_2)}} \times 100 \qquad \mathbf{K} = \frac{\mathbf{V}_{\mathrm{H}}}{\mathbf{I}_c \times \mathbf{B}}$$

特征曲线图 Characteristic Curves

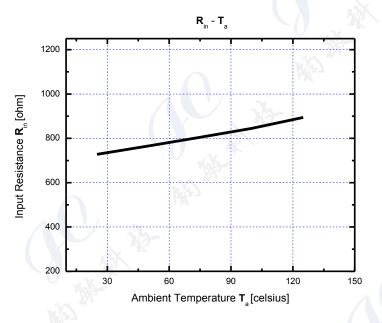
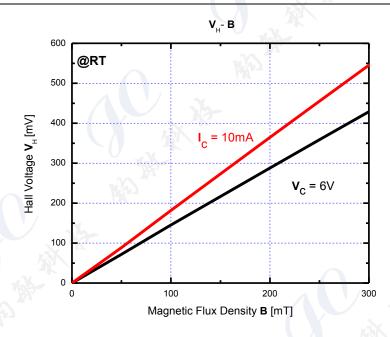



Figure 1. Input resistance R_{in} as a function of ambient temperature T_{a} .

Copy Right Reserved

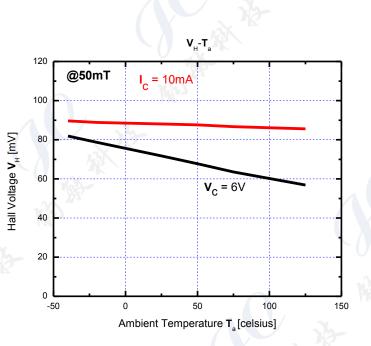


Figure 3. Hall voltage V_{H} as a function of ambient temperature $T_{a.}$

Copy Right Reserved

Version 1.0

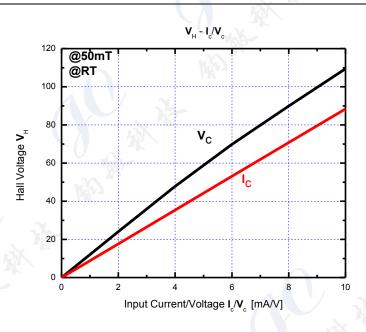


Figure 4. Hall voltage V_{H} as a function of electrical stimuli I_{c}/V_{c} .

Copy Right Reserved

Version 1.0

● ESD 预防措施

本产品是对ESD(静电放电)敏感的设备。在以下环境中处理带有ESD警告标记的霍尔元件:

- 不太可能出现静电荷的环境 (例如:相对湿度超过40%RH)。

- 处理器件时佩戴防静电服和腕带
- 对于直接接触器件的容器建议实施ESD防护措施。

● 存储注意事项

- 在开封MBB后,产品应在适当的温度和湿度(5至35℃,40至60%RH)下储存。强烈建议使用自密封

袋,使产品远离氯气和腐蚀性气体。

长期储存

产品用MBB密封

-对于超过2年的储存,建议在MBB密封的氮气氛中储存。大气中的水氧会导致器件引脚氧化,从而导致

引脚焊接能力变差。

安全注意事项

-不要通过燃烧,粉碎或化学处理等方式将本产品变成气体,粉末或液体。

-丢弃本产品时,请遵守法律和公司规定。

Copy Right Reserved

Version 1.0

• Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise. (Ex; Relative Humidity; over 40%RH).
- Wearing the antistatic suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

• Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5 to 35°C, 40 to 60%RH) after the unsealing of MBB. Keeping products away from chlorine and corrosive gas.

Long-term storage

Products are sealed in MBB.

For storage longer than 2 years, it is recommended to store in nitrogen atmosphere with MBB sealed.
Oxygen and H₂O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.

- Observe laws and company regulations when discarding this product.

Copy Right Reserved

Version 1.0